A Modified LIMA Framework for Spectral Subtraction Applied to In-Car Speech Recognition
نویسندگان
چکیده
In noisy environments, speech recognition accuracy degrades significantly. Speech enhancement algorithms have been designed to overcome this, however solutions to date have not been optimal for speech recognition especially for non-stationary noise like that in a car. Recently, a likelihood-maximising (LIMA) criteria has been applied to speech enhancement techniques. This paper analyses the suitability of spectral subtraction for potential use under a modified version of this framework where direct access to and manipulation of speech recognition models is not available. Analysis shows spectral subtraction is suited to this holistic LIMA approach by confirming the cost surface is appropriate for gradient descent methods. It is also observed that there are regions on the cost surface where performance exceeds that achieved by parameter values traditionally selected for spectral subtraction.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملRobust Speech Recognition Using Speech Enhancement
Automatic Speech Recognition (ASR) has matured into a technology which is becoming more common in our everyday lives, and is emerging as a necessity to minimise driver distraction when operating in-car systems such as navigation and infotainment. In “noise-free” environments, word recognition performance of these systems has been shown to approach 100%, however this performance degrades rapidly...
متن کاملSpeech enhancement for a car environment using LP residual signal and spectral subtraction
Handsfree speaker input is mandatory to enable safe operation in cars. In those scenarios robust speech recognition emerges as one of the key technologies to produce voice control car devices. Through this paper, we propose a method of processing speech degraded by reverberation and noise in an automobile environment. This approach involves analyzing the linear prediction error signal to produc...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملSimultaneous adaptation of echo cancellation and spectral subtraction for in-car speech recognition
For noise robustness of in-car speech recognition, most of the current systems are based on the assumption that there is only a stationary cruising noise. Therefore, the recognition rate is greatly reduced when there is music or news coming from a radio or a CD player in the car. Since reference signals are available from such in-vehicle units, there is great hope that echo cancellers can elimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007